Trace-distance measure of Coherence

Preeti Parashar

Physics and Applied Mathematics Unit
Indian Statistical Institute
Kolkata
January 30, 2018

Joint works...

Collaborators: Maciej Lewenstein, Swapan Rana, and Andreas Winter

Joint works...

Collaborators: Maciej Lewenstein, Swapan Rana, and Andreas Winter

PHYSICAL REVIEW A

covering atomic, molecular and optical physics and quantum information
Highlights Recent Accepted Authors Referees Search Press About ू̀

Trace-distance measure of coherence
Swapan Rana, Preeti Parashar, and Maciej Lewenstein
Phys. Rev. A 93, 012110 - Published 12 January 2016

PHYSICAL REVIENA
covering atomic, molecular, and optical physics and quantum information
Highlights Recent Accepted Authors Referees Search Press About ล

Logarithmic coherence: Operational interpretation of $\boldsymbol{\ell}_{1}$-norm coherence
Swapan Rana, Preeti Parashar, Andreas Winter, and Maciej Lewenstein Phys. Rev. A 96, 052336 - Published 27 November 2017
P. Parashar \propto ISI (Kol) \quad Trace-distance measure

Outline

- Introduction to coherence measures
- Model: Incoherent Operations (IO)
- Coherence measures: basic requirements
- Distance-based measures
- ℓ_{p} - and Shatten- p-norm based measures?
- Neither is strong monotone for $p>1$
- Trace distance measure of coherence
- Strong monotone for Qubits and X-states
- But not for all states
-What about entanglement?
- Operational interpretations of $C_{\ell_{1}}$
- Equals to Negativity of the MC state
- Optimum C_{r} for a given $C_{\ell_{1}}$?
- Conclusion

Coherence Theory

Resource Theory of Coherence [Baumgratz et al., PRL (2014)]

- Free states: Diagonal in chosen basis
- 'Preferred', or 'Chosen' basis $\{|i\rangle\}$ of the corresponding Hilbert space $\mathscr{H}=\mathbb{C}^{d}$.
- Set of 'incoherent', or 'free' states:

$$
\left.\mathscr{I}=\left\{\delta\left|\delta=\sum_{i} p_{i}\right| i\right\rangle\langle i|\right\} .
$$

- Free Operations: Incoherent Operations (IO)
- An operator K is 'incoherent' if $K \delta K^{\dagger} \in \mathscr{I}, \forall \delta \in \mathscr{I}$. $\Longrightarrow K$ can have at most one non-zero entry in any column.
- A CPTP map Λ is 'free' or 'incoherent' if \exists incoherent Kraus operators $\left\{K_{n}\right\}$ for Λ.

Coherence measures

What makes a coherence measure?

Coherence measures

What makes a coherence measure?

Coherence Monotones
Any function $C: \mathscr{B}\left(\mathscr{H}^{d}\right) \rightarrow \mathbb{R}^{+}$is a coherence measure if it satisfies

1. Faithfulness: $C(\delta)=0 \Leftrightarrow \delta \in \mathscr{I}$.

Coherence measures

What makes a coherence measure?

Coherence Monotones
Any function $C: \mathscr{B}\left(\mathscr{H}^{d}\right) \rightarrow \mathbb{R}^{+}$is a coherence measure if it satisfies

1. Faithfulness: $C(\delta)=0 \Leftrightarrow \delta \in \mathscr{I}$.
2. Convexity: $C\left(\sum p_{i} \rho_{i}\right) \leq \sum p_{i} C\left(\rho_{i}\right), \forall$ probability p and states $\left\{\rho_{i}\right\}$.

Coherence measures

What makes a coherence measure?

Coherence Monotones

Any function $C: \mathscr{B}\left(\mathscr{H}^{d}\right) \rightarrow \mathbb{R}^{+}$is a coherence measure if it satisfies

1. Faithfulness: $C(\delta)=0 \Leftrightarrow \delta \in \mathscr{I}$.
2. Convexity: $C\left(\sum p_{i} \rho_{i}\right) \leq \sum p_{i} C\left(\rho_{i}\right), \forall$ probability p and states $\left\{\rho_{i}\right\}$.
3a. Monotonicity: $C\left(\Lambda_{\mathrm{ICPTP}}[\rho]\right) \leq C(\rho), \quad \forall \rho$ and incoherent Λ.

Coherence measures

What makes a coherence measure?

Coherence Monotones

Any function $C: \mathscr{B}\left(\mathscr{H}^{d}\right) \rightarrow \mathbb{R}^{+}$is a coherence measure if it satisfies

1. Faithfulness: $C(\delta)=0 \Leftrightarrow \delta \in \mathscr{I}$.
2. Convexity: $C\left(\sum p_{i} \rho_{i}\right) \leq \sum p_{i} C\left(\rho_{i}\right), \forall$ probability p and states $\left\{\rho_{i}\right\}$.
3a. Monotonicity: $C\left(\Lambda_{\text {ICPTP }}[\rho]\right) \leq C(\rho), \quad \forall \rho$ and incoherent Λ.
${ }_{3} 3 \mathrm{~b}$. Strong Monotonicity: $\sum p_{n} C\left(\rho_{n}\right) \leq C(\rho), \rho_{n}=K_{n} \rho K_{n}^{\dagger} / p_{n}$, $p_{n}=\operatorname{Tr}\left[K_{n} \rho K_{n}^{\dagger}\right]$, for all incoherent $\left\{K_{n}\right\}$. Allows selective measurements or stochastic operations. Harder to verify: $3 \mathrm{~b} .+2$. $\Rightarrow 3 a$.

Distance-based measures

How to quantify (measure)?

Let $m \in S$ and P be a property regarding the members of S. The usual way to quantify how much of the property P is contained in m is to determine the distance of m from the set of all $x \in S$ which does not have the property P.

Entanglement from contractive metric [Vedral and Plenio, PRA 1998]

If a distance function \mathscr{D} satisfies
i. Positivity: $\mathscr{D}(\rho, \sigma) \geq 0 \quad \forall \rho, \sigma$, with equality iff $\rho=\sigma$,
ii. Contractivity: $\mathscr{D}(\Lambda[\rho], \Lambda[\sigma]) \leq \mathscr{D}(\rho, \sigma)$ for all CPTP map Λ, then an entanglement measure can be defined through this distance as

$$
E(\rho)=\inf _{\sigma \in\{\text { Separable states }\}} \mathscr{D}(\rho, \sigma)
$$

\checkmark REE:

$$
\mathscr{D}(x, y)=S(x \| y):= \begin{cases}\operatorname{Tr}(x \log x-x \log y), & \text { if support } x \subseteq \text { support } y \\ +\infty, & \text { otherwise }\end{cases}
$$

\checkmark Bures metric: $\mathscr{D}(x, y)=2-2 \sqrt{F(x, y)}$, where $F(x, y):=\left[\operatorname{Tr}\{\sqrt{x} y \sqrt{x}\}^{1 / 2}\right]^{2}$
Trace distance: $\mathscr{D}(x, y)=\|x-y\|_{1}:=\operatorname{Tr}|x-y|$

Entanglement from contractive metric [Vedral and Plenio, PRA 1998]

If a distance function \mathscr{D} satisfies
i. Positivity: $\mathscr{D}(\rho, \sigma) \geq 0 \quad \forall \rho, \sigma$, with equality iff $\rho=\sigma$,
ii. Contractivity: $\mathscr{D}(\Lambda[\rho], \Lambda[\sigma]) \leq \mathscr{D}(\rho, \sigma)$ for all CPTP map Λ, then an entanglement measure can be defined through this distance as

$$
E(\rho)=\inf _{\sigma \in\{\text { Separable states }\}} \mathscr{D}(\rho, \sigma)
$$

\checkmark REE:

$$
\mathscr{D}(x, y)=S(x \| y):= \begin{cases}\operatorname{Tr}(x \log x-x \log y), & \text { if support } x \subseteq \text { support } y \\ +\infty, & \text { otherwise }\end{cases}
$$

\checkmark Bures metric: $\mathscr{D}(x, y)=2-2 \sqrt{F(x, y)}$, where $F(x, y):=\left[\operatorname{Tr}\{\sqrt{x} y \sqrt{x}\}^{1 / 2}\right]^{2}$
\checkmark Trace distance: $\mathscr{D}(x, y)=\|x-y\|_{1}:=\operatorname{Tr}|x-y|$

* Hilbert-Schmidt distance:
$\mathscr{D}(x, y)=\|x-y\|_{2}$ is not-contractive [Ozawa, PLA 2000].

Measures from $\ell_{p^{-}}$and Schatten- p-norm $\left(C_{\ell_{p}}, C_{p}\right)$

** For $X \in \mathbb{C}^{m \times n}, p \in[1, \infty)$, the norms are defined by

$$
\begin{aligned}
\|X\|_{\ell_{p}} & :=\left(\sum_{i, j}\left|x_{i j}\right|^{p}\right)^{1 / p} \\
\|X\|_{p} & :=\left(\operatorname{Tr}|X|^{p}\right)^{1 / p}=\left(\sum_{i}^{r} \sigma_{i}^{p}\right)^{1 / p}, \sigma=\lambda\left(\sqrt{X^{\dagger} X}\right) .
\end{aligned}
$$

* The induced distance functions $C_{\ell_{p}}$ and C_{p} satisfies 1 . and 2 .
* So we have to check only 3: the (strong) monotonicity.

Measures from $\ell_{p^{-}}$and Schatten- p-norm $\left(C_{\ell_{p}}, C_{p}\right)$

* For $X \in \mathbb{C}^{m \times n}, p \in[1, \infty)$, the norms are defined by

$$
\begin{aligned}
\|X\|_{\ell_{p}} & :=\left(\sum_{i, j}\left|x_{i j}\right|^{p}\right)^{1 / p} \\
\|X\|_{p} & :=\left(\operatorname{Tr}|X|^{p}\right)^{1 / p}=\left(\sum_{i}^{r} \sigma_{i}^{p}\right)^{1 / p}, \sigma=\lambda\left(\sqrt{X^{\dagger} X}\right) .
\end{aligned}
$$

* The induced distance functions $C_{\ell_{p}}$ and C_{p} satisfies 1 . and 2 .
* So we have to check only 3: the (strong) monotonicity.
* Both are monotone on qubits. Is it so in higher dim?

Measures from $\ell_{p^{-}}$and Schatten- p-norm $\left(C_{\ell_{p}}, C_{p}\right)$

* For $X \in \mathbb{C}^{m \times n}, p \in[1, \infty)$, the norms are defined by

$$
\begin{aligned}
&\|X\|_{\ell_{p}}:=\left(\sum_{i, j}\left|x_{i j}\right|^{p}\right)^{1 / p}, \\
&\|X\|_{p}:=\left(\operatorname{Tr}|X|^{p}\right)^{1 / p}=\left(\sum_{i}^{r} \sigma_{i}^{p}\right)^{1 / p}, \sigma=\lambda\left(\sqrt{X^{\dagger} X}\right) .
\end{aligned}
$$

* The induced distance functions $C_{\ell_{p}}$ and C_{p} satisfies 1 . and 2 .
* So we have to check only 3: the (strong) monotonicity.
* Both are monotone on qubits. Is it so in higher dim?

For all $p \in(1, \infty)$ neither $C_{\ell_{p}}$ nor C_{p} is a monotone [PRA (2016)].

None of $C_{\ell_{p}}, C_{p}$ is a monotone for $p>1$

Counterexample from any $\rho \notin \mathscr{I}$

Let $K_{i}=|0\rangle\langle i-1|, i=1,2, \ldots, d$ and consider the incoherent channel $\Lambda=\left\{\tilde{K}_{i}\right\}$ with the Kraus operators $\tilde{K}_{i}=1 \otimes K_{i}$. Then we have

$$
\begin{aligned}
C_{p}(\Lambda[\rho \otimes \mathbb{1} / d]) & =C_{p}(\rho \otimes|0\rangle\langle 0|) \\
& =C_{p}(\rho) \\
& >C_{p}(\rho \otimes \mathbb{1} / d)
\end{aligned}
$$

The inequality follows from

$$
C_{p}(\rho \otimes \mathbb{1} / d) \leq\left\|\rho \otimes \mathbb{1} / d-\delta^{\star} \otimes \mathbb{1} / d\right\|_{p}=C_{p}(\rho)\|\mathbb{V} / d\|_{p}<C_{p}(\rho) .
$$

None of $C_{\ell_{p}}, C_{p}$ is a monotone for $p>1$

Counterexample from any $\rho \notin \mathscr{I}$

Let $K_{i}=|0\rangle\langle i-1|, i=1,2, \ldots, d$ and consider the incoherent channel $\Lambda=\left\{\tilde{K}_{i}\right\}$ with the Kraus operators $\tilde{K}_{i}=1 \otimes K_{i}$. Then we have

$$
\begin{aligned}
C_{p}(\Lambda[\rho \otimes \mathbb{1} / d]) & =C_{p}(\rho \otimes|0\rangle\langle 0|) \\
& =C_{p}(\rho) \\
& >C_{p}(\rho \otimes \mathbb{1} / d)
\end{aligned}
$$

The inequality follows from

$$
C_{p}(\rho \otimes \mathbb{1} / d) \leq\left\|\rho \otimes \mathbb{1} / d-\delta^{\star} \otimes \mathbb{1} / d\right\|_{p}=C_{p}(\rho)\|\mathbb{1} / d\|_{p}<C_{p}(\rho) .
$$

As $C_{\ell_{p}}(\rho \otimes \mathbb{1} / d)=d^{1 / p-1} C_{\ell_{p}}(\rho)<C_{\ell_{p}}(\rho), C_{\ell_{p}}$ also violates monotonicity.
C_{ℓ}, C_{p}
Neither is a (strong) monotone for $p>1$
C_{Tr} is not a strong monotone
Entanglement...?

Hence $C_{\ell_{p}}, C_{p}$ is not strong monotone for $p>1$

Being convex, if it were strong monotone, it would be monotone!

Hence $C_{\ell_{p}}, C_{p}$ is not strong monotone for $p>1$

Being convex, if it were strong monotone, it would be monotone!

$$
\rho=\frac{1}{4}\left(\begin{array}{llll}
1 & 0 & a & 0 \\
0 & 1 & 0 & b \\
\bar{a} & 0 & 1 & 0 \\
0 & \bar{b} & 0 & 1
\end{array}\right), K_{1}=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right), K_{2}=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right) .
$$

Then

$$
\rho_{1}=\frac{1}{4 p_{1}}\left(\begin{array}{cc}
1 & a \\
\bar{a} & 1
\end{array}\right) \oplus 0, \rho_{2}=\frac{1}{4 p_{2}}\left(\begin{array}{cc}
1 & b \\
\bar{b} & 1
\end{array}\right) \oplus 0, p_{1}=p_{2}=\frac{1}{2} .
$$

The strong monotonicity (for both $C_{\ell_{p}}$ and C_{p}): $(|a|+|b|)^{p} \leq|a|^{p}+|b|^{p}$.

Hence $C_{\ell_{p}}, C_{p}$ is not strong monotone for $p>1$

Being convex, if it were strong monotone, it would be monotone!

$$
\rho=\frac{1}{4}\left(\begin{array}{llll}
1 & 0 & a & 0 \\
0 & 1 & 0 & b \\
\bar{a} & 0 & 1 & 0 \\
0 & \bar{b} & 0 & 1
\end{array}\right), K_{1}=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right), K_{2}=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right) .
$$

Then

$$
\rho_{1}=\frac{1}{4 p_{1}}\left(\begin{array}{cc}
1 & a \\
\bar{a} & 1
\end{array}\right) \oplus 0, \rho_{2}=\frac{1}{4 p_{2}}\left(\begin{array}{cc}
1 & b \\
\bar{b} & 1
\end{array}\right) \oplus 0, p_{1}=p_{2}=\frac{1}{2} .
$$

The strong monotonicity (for both $C_{\ell_{p}}$ and C_{p}): $(|a|+|b|)^{p} \leq|a|^{p}+|b|^{p}$.

$$
(x+y)^{1+\epsilon}=(x+y)(x+y)^{\epsilon}=x(x+y)^{\epsilon}+y(x+y)^{\epsilon}>x \cdot x^{\epsilon}+y \cdot y^{\epsilon}=x^{1+\epsilon}+y^{1+\epsilon}
$$

Hence $C_{\ell_{p}}, C_{p}$ is not strong monotone for $p>1$

Being convex, if it were strong monotone, it would be monotone!

$$
\rho=\frac{1}{4}\left(\begin{array}{llll}
1 & 0 & a & 0 \\
0 & 1 & 0 & b \\
\bar{a} & 0 & 1 & 0 \\
0 & \bar{b} & 0 & 1
\end{array}\right), K_{1}=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right), K_{2}=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right) .
$$

Then

$$
\rho_{1}=\frac{1}{4 p_{1}}\left(\begin{array}{ll}
1 & a \\
\bar{a} & 1
\end{array}\right) \oplus 0, \rho_{2}=\frac{1}{4 p_{2}}\left(\begin{array}{cc}
1 & b \\
\bar{b} & 1
\end{array}\right) \oplus 0, p_{1}=p_{2}=\frac{1}{2} .
$$

The strong monotonicity (for both $C_{\ell_{p}}$ and C_{p}): $(|a|+|b|)^{p} \leq|a|^{p}+|b|^{p}$.

$$
(x+y)^{1+\epsilon}=(x+y)(x+y)^{\epsilon}=x(x+y)^{\epsilon}+y(x+y)^{\epsilon}>x \cdot x^{\epsilon}+y \cdot y^{\epsilon}=x^{1+\epsilon}+y^{1+\epsilon}
$$

Strong monotonicity does not hold for all $a b \neq 0$ and $p \in(1, \infty)$.

The only remaining case $p=1: C_{\ell_{1}}$ and C_{Tr}

$$
\begin{array}{rlrl}
C_{\ell_{1}}(\rho) & :=\min _{\delta \in \mathscr{I}}\|\rho-\delta\|_{\ell_{1}} & C_{\mathrm{Tr}}(\rho) & :=\min _{\delta \in \mathscr{\mathscr { I }}}\|\rho-\delta\|_{1} \\
& =\sum_{i \neq j}\left|\rho_{i j}\right| & =?
\end{array}
$$

- $C_{\ell_{1}}$ is a (strong) monotone [Baumgratz et al., PRL (2014)].
- C_{Tr} is a monotone, as $\|.\|_{1}$ is contractive under any CPTP map.

Semidefinite Program (SDP) for $C_{\operatorname{Tr}}(\rho)$ [PRA (2016)]

$$
\begin{aligned}
& \text { Minimize } \operatorname{Tr}(P+N) \\
& \text { subject to }\left\{\begin{aligned}
P-N & =\rho-\delta, \\
\operatorname{Tr} \delta & =1, \\
\delta & \in \mathscr{I} \\
P, N, \delta & \geq 0 .
\end{aligned}\right.
\end{aligned}
$$

For pure states, a better SDP: [Chen et al., PRA (2016)].
${ }^{C_{0}}{ }^{C} p$
Nefther is a (strong) monotone for $p>1$
${ }^{C} \mathrm{Tr}$ is not a strong monotone Entanglement...?

C_{Tr} is monotone but not strong monotone

- C_{Tr} is strong monotone on qubits, X-states, and any direct sum ($\left.\oplus\right)$ of those [PRA (2016)].
${ }^{C_{0}}{ }^{C} p$
Nelther is a (strong) monotone for $p>1$
${ }^{C} \mathrm{Tr}$ is not a strong monotone
Entanglement...?

C_{Tr} is monotone but not strong monotone

- C_{Tr} is strong monotone on qubits, X-states, and any direct sum ($\left.\oplus\right)$ of those [PRA (2016)].
- However, it is not a strong monotone [Yu et al., PRA (2016)].

C_{Tr} is monotone but not strong monotone

- C_{Tr} is strong monotone on qubits, X-states, and any direct sum (\oplus) of those [PRA (2016)].
- However, it is not a strong monotone [Yu et al., PRA (2016)].

Strong coherence monotone: any convex and monotone C is strong monotone iff $C\left(p_{1} \rho_{1} \oplus p_{2} \rho_{2}\right)=p_{1} C\left(\rho_{1}\right)+p_{2} C\left(\rho_{2}\right)$.

For $\left|\Phi_{d}\right\rangle=\frac{1}{\sqrt{d}} \sum|i\rangle, C_{\operatorname{Tr}}\left(\left|\Phi_{d}\right\rangle\right)=2(1-1 / d)$. Choosing $\rho_{1}=\left|\Phi_{2}\right\rangle$, $\rho_{2}=\left|\Phi_{3}\right\rangle, p_{1}=p_{2}=1 / 2$, shows that C_{Tr} is not a strong monotone.

What about E_{Tr} ?

$$
E_{\operatorname{Tr}}(\rho):=\min _{\sigma \in\{\text { Separable states }\}}\|\rho-\sigma\|_{1}
$$

- Like C_{Tr}, an entanglement monotone.
- But not computable like C_{Tr}.

What about E_{Tr} ?

$$
E_{\operatorname{Tr}}(\rho):=\min _{\sigma \in\{\text { Separable states }\}}\|\rho-\sigma\|_{1}
$$

- Like C_{Tr}, an entanglement monotone.
- But not computable like C_{Tr}.

Same for pure states [Chen et al., PRA (2016)]:

$$
C_{\operatorname{Tr}}\left(\sum \sqrt{\lambda_{i}}|i\rangle\right)=E_{\operatorname{Tr}}\left(\sum \sqrt{\lambda_{i}}|i i\rangle\right)
$$

What about E_{Tr} ?

$$
E_{\operatorname{Tr}}(\rho):=\min _{\sigma \in\{\text { Separable states }\}}\|\rho-\sigma\|_{1}
$$

- Like C_{Tr}, an entanglement monotone.
- But not computable like C_{Tr}.

Same for pure states [Chen et al., PRA (2016)]:

$$
C_{\operatorname{Tr}}\left(\sum \sqrt{\lambda_{i}}|i\rangle\right)=E_{\operatorname{Tr}}\left(\sum \sqrt{\lambda_{i}}|i i\rangle\right)
$$

E_{Tr} is not a strong monotone [Qiao et al., arXiv: 1710.04447 (2017)]!

The simplest and intuitive

Facts about $C_{\ell_{1}}$

- Captures the simple intuitive idea that superposition corresponds to off-diagonals.
- Easily computable even in the time-dependent case where the evolved density matrix can not be diagonalized, so eigenvalues and C_{r} become non-computable.
- Physical: Success probability of unambiguous state discrimination in interference experiments, 'which-path information' about a particle inside a multipath interferometer [Bagan et al. PRL (2016)].
- No conspicuous role in entanglement theory

$C_{\ell_{1}}$ for pure states

Equals to Negativity: For pure states, $C_{\ell_{1}}$ is negativity of the corresponding bipartite state,

$$
C_{\ell_{1}}\left(|\psi\rangle:=\sum \sqrt{\lambda_{i}}|i\rangle\right)=\left(\sum \sqrt{\lambda_{i}}\right)^{2}-1=2 \mathscr{N}\left(|\phi\rangle:=\sum \sqrt{\lambda_{i}}|i i\rangle\right)
$$

$C_{\ell_{1}}$ for pure states

Equals to Negativity: For pure states, $C_{\ell_{1}}$ is negativity of the corresponding bipartite state,

$$
C_{\ell_{1}}\left(|\psi\rangle:=\sum \sqrt{\lambda_{i}}|i\rangle\right)=\left(\sum \sqrt{\lambda_{i}}\right)^{2}-1=2 \mathscr{N}\left(|\phi\rangle:=\sum \sqrt{\lambda_{i}}|i i\rangle\right)
$$

N Upper bounds C_{d} :

$$
C_{d}(|\psi\rangle)=C_{r}(|\psi\rangle) \leq C_{\ell_{1}}(|\psi\rangle), \quad \forall|\psi\rangle .
$$

Equality holds iff diag[| $|\psi\rangle\langle\psi|]$ is (up to permutation) either $\{1,0, \cdots, 0\}$, or, $\{1 / 2,1 / 2,0, \ldots, 0\}$. That is, either $|\psi\rangle \in \mathscr{I}$, or $|\psi\rangle \equiv\left|\Phi_{2}\right\rangle \oplus 0$.

Using the recursive property [Lin, IEEE Trans. Inf. Theory, 1991] of entropy function $H(\lambda)$, we have

$$
\begin{aligned}
& C_{\ell_{1}}\left(|\psi\rangle=\sum_{i=1}^{d} \sqrt{\lambda_{i}}|i\rangle\right)-C_{r}(|\psi\rangle) \\
& =2 \sum_{i=1}^{d-1} \sqrt{\lambda_{i}} \sum_{j=i+1}^{d} \sqrt{\lambda_{j}}-H(\lambda) \\
& \geq 2 \sum_{i=1}^{d-1} \sqrt{\lambda_{i}} \sqrt{\sum_{j=i+1}^{d} \lambda_{j}-H(\lambda)} \\
& =\sum_{i=1}^{d-1}[\left(\sum_{k=i}^{d} \lambda_{k}\right) \underbrace{\left(2 \sqrt{\frac{\lambda_{i}}{\sum_{k=i}^{d} \lambda_{k}}\left(1-\frac{\lambda_{i}}{\sum_{k=i}^{d} \lambda_{k}}\right)}-H_{2}\left(\frac{\lambda_{i}}{\sum_{k=i}^{d} \lambda_{k}}\right)\right.}_{\geq 0, \text { as } H_{2}(x) \leq 2 \sqrt{x(1-x)}})] .
\end{aligned}
$$

The function $C_{\ell_{1}}(|\psi\rangle)-C_{r}(|\psi\rangle)$ is Schur-concave in $\operatorname{diag}(|\psi\rangle\langle | \psi \mid)$.

$$
0 \leq C_{\ell_{1}}(|\psi\rangle)-C_{r}(|\psi\rangle) \leq d-1-\log _{2} d, \quad d=\operatorname{rank}[\operatorname{diag}(|\psi\rangle\langle\psi|)] .
$$

The function $C_{\ell_{1}}(|\psi\rangle)-C_{r}(|\psi\rangle)$ is Schur-concave in $\operatorname{diag}(|\psi\rangle\langle | \psi \mid)$.

$$
0 \leq C_{\ell_{1}}(|\psi\rangle)-C_{r}(|\psi\rangle) \leq d-1-\log _{2} d, \quad d=\operatorname{rank}[\operatorname{diag}(|\psi\rangle\langle\psi|)] .
$$

All $|\psi\rangle$ with $C_{\ell_{1}}(|\psi\rangle)=b$, has $C_{r}(|\psi\rangle)$ bounded by

$$
\frac{\sqrt{2} b^{2}}{d(d-1)} \leq C_{r} \leq \log _{2}(1+b), \quad d=\operatorname{rank}[\operatorname{diag}(|\psi\rangle\langle\psi|)]
$$

Note: Lower bound $\rightarrow 0$ as $d \rightarrow \infty$, but the upper bound does not depend on d.

The function $C_{\ell_{1}}(|\psi\rangle)-C_{r}(|\psi\rangle)$ is Schur-concave in $\operatorname{diag}(|\psi\rangle\langle | \psi \mid)$.

$$
0 \leq C_{\ell_{1}}(|\psi\rangle)-C_{r}(|\psi\rangle) \leq d-1-\log _{2} d, \quad d=\operatorname{rank}[\operatorname{diag}(|\psi\rangle\langle\psi|)] .
$$

All $|\psi\rangle$ with $C_{\ell_{1}}(|\psi\rangle)=b$, has $C_{r}(|\psi\rangle)$ bounded by

$$
\frac{\sqrt{2} b^{2}}{d(d-1)} \leq C_{r} \leq \log _{2}(1+b), \quad d=\operatorname{rank}[\operatorname{diag}(|\psi\rangle\langle\psi|)]
$$

Note: Lower bound $\rightarrow 0$ as $d \rightarrow \infty$, but the upper bound does not depend on d.

What is optimum C_{r} given only the knowledge of $C_{\ell_{1}}$?

Optimum C_{r} from the knowledge of $C_{\ell_{1}}(|\psi\rangle)$

$$
\begin{aligned}
& H_{2}(\alpha)+(1-\alpha) \log _{2}(d-1) \leq C_{r}(|\psi\rangle) \leq H_{2}(\beta)+(1-\beta) \log _{2}(n-1), \\
& \text { where } \alpha=\frac{2+(d-2)(d-b)+2 \sqrt{(b+1)(d-1)(d-1-b)}}{d^{2}}, \\
& \beta=\frac{2+(n-2)(n-b)-2 \sqrt{(b+1)(n-1)(n-1-b)}}{n^{2}}, \\
& d=\operatorname{rank}[\operatorname{diag}(|\psi\rangle\langle\psi|)], \\
& n= \begin{cases}b+1 & \text { if } b \text { is integer, } \\
{[b]+2} & \text { otherwise, },\end{cases}
\end{aligned}
$$

with $[x]$ denoting the integer part of x.

```
Pure states
Optimum Crom from C C 
Qubits
General \rho
```

- Each of the bounds is satisfied by a unique state, up to permutation the diagonal elements of the state with minimum C_{r} are given by $\{\alpha,(1-\alpha) /(d-1),(1-\alpha) /(d-1), \cdots,(1-\alpha) /(d-1)\}$ and that with maximum C_{r} are $\{\beta,(1-\beta) /(n-1),(1-\beta) /(n-1), \cdots,(1-\beta) /(n-1)\}$.
- As $d \rightarrow \infty, \alpha \rightarrow 1$, so C_{r} could be arbitrarily small for large enough d, but can not be increased beyond that sharpest upper bound.

Optimum C_{r} from the knowledge of $C_{\ell_{1}}(\rho)$ for qubit ρ
All qubit states ρ with a given coherence $C_{\ell_{1}}(\rho)=2 b$ satisfy

$$
1-H_{2}\left(\frac{1-2 b}{2}\right) \leq C_{r}(\rho) \leq H_{2}\left(\frac{1-\sqrt{1-4 b^{2}}}{2}\right) \leq C_{\ell_{1}}(\rho)
$$

Optimum C_{r} from the knowledge of $C_{\ell_{1}}(\rho)$ for general ρ ?

All we have is:

$$
C_{r}(\rho) \leq \log _{2}\left[1+C_{R}(\rho)\right] \leq \log _{2}\left[1+C_{\ell_{1}}(\rho)\right] \leq\left\{\begin{array}{ll}
C_{\ell_{1}}(\rho), & \text { if } C_{\ell_{1}}(\rho) \geq 1 \\
\frac{1}{\ln 2} C_{\ell_{1}}(\rho), & \text { if } C_{\ell_{1}}(\rho)<1
\end{array},\right.
$$

where C_{R} is the robustness, a strong monotone, defined by

$$
C_{R}(\rho):=\min _{\sigma}\left\{s \geq 0 \left\lvert\, \frac{\rho+s \sigma}{1+s} \in \mathscr{I}\right.\right\}=\min _{\tau \in \mathscr{I}}\{s \geq 0 \mid \rho \leq(1+s) \tau\} .
$$

Conclusion and Outlook

- Both $\ell_{p^{-}}$and Schatten- p-norm based functions are not strong monotone of coherence for any $p>1$. Neither is a monotone in the first place. C_{Tr} is monotone, but not strong monotone like $C_{\ell_{1}}$.

Conclusion and Outlook

- Both $\ell_{p^{-}}$and Schatten- p-norm based functions are not strong monotone of coherence for any $p>1$. Neither is a monotone in the first place. C_{Tr} is monotone, but not strong monotone like $C_{\ell_{1}}$.
- $E_{\text {Tr }}$ is also monotone but not strong monotone. In [Eisert et al. JPA 2003] it is claimed that if we restrict the minimization over separable states having the same reductions as ρ, then the modified E_{Tr} is a strong monotone. What is an easy modification for $C_{\text {Tr }}$ to make it a strong monotone?

Conclusion and Outlook

- Both $\ell_{p^{-}}$and Schatten- p-norm based functions are not strong monotone of coherence for any $p>1$. Neither is a monotone in the first place. C_{Tr} is monotone, but not strong monotone like $C_{\ell_{1}}$.
- $E_{\text {Tr }}$ is also monotone but not strong monotone. In [Eisert et al. JPA 2003] it is claimed that if we restrict the minimization over separable states having the same reductions as ρ, then the modified E_{Tr} is a strong monotone. What is an easy modification for $C_{\text {Tr }}$ to make it a strong monotone?
- It seems that like convexity (as logarithmic version of any strong monotone is non-convex), strong monotonicity should be only a desirable feature for monotone, not a primary requirement.
- Operational (information theoretic) interpretations of $C_{\ell_{1}}$:

$$
\begin{aligned}
C_{d}(|\psi\rangle) & =C_{r}(|\psi\rangle) \leq C_{l_{1}}(|\psi\rangle), \forall|\psi\rangle \\
C_{d}(\rho) & =C_{r}(\rho) \leq \log _{2}\left[1+C_{\ell_{1}}(\rho)\right] \leq \begin{cases}C_{\ell_{1}}(\rho), & \text { if } C_{\ell_{1}}(\rho) \geq 1 \\
\frac{1}{\ln 2} C_{\ell_{1}}(\rho), & \text { if } C_{\ell_{1}}(\rho)<1 .\end{cases}
\end{aligned}
$$

- Operational (information theoretic) interpretations of $C_{\ell_{1}}$:

$$
\begin{aligned}
C_{d}(|\psi\rangle) & =C_{r}(|\psi\rangle) \leq C_{l_{1}}(|\psi\rangle), \forall|\psi\rangle \\
C_{d}(\rho) & =C_{r}(\rho) \leq \log _{2}\left[1+C_{\ell_{1}}(\rho)\right] \leq \begin{cases}C_{\ell_{1}}(\rho), & \text { if } C_{\ell_{1}}(\rho) \geq 1 \\
\frac{1}{\ln 2} C_{\ell_{1}}(\rho), & \text { if } C_{\ell_{1}}(\rho)<1 .\end{cases}
\end{aligned}
$$

Question: Can we drop the factor $1 / \ln 2 \approx 1.4427$?

- Operational (information theoretic) interpretations of $C_{\ell_{1}}$:

$$
\begin{aligned}
C_{d}(|\psi\rangle) & =C_{r}(|\psi\rangle) \leq C_{l_{1}}(|\psi\rangle), \forall|\psi\rangle \\
C_{d}(\rho) & =C_{r}(\rho) \leq \log _{2}\left[1+C_{\ell_{1}}(\rho)\right] \leq \begin{cases}C_{\ell_{1}}(\rho), & \text { if } C_{\ell_{1}}(\rho) \geq 1 \\
\frac{1}{\ln 2} C_{\ell_{1}}(\rho), & \text { if } C_{\ell_{1}}(\rho)<1 .\end{cases}
\end{aligned}
$$

Question: Can we drop the factor $1 / \ln 2 \approx 1.4427$?

- If so, it would be sharpest as for any $0<b<1$ and $d \geq 3$, the d-dimensional state

$$
\rho=\left(\begin{array}{ll}
b / 2 & b / 2 \\
b / 2 & b / 2
\end{array}\right) \oplus(1-b) \delta, \quad \delta \in \mathscr{I}
$$

has $C_{r}(\rho)=C_{\ell_{1}}(\rho)=b$

Thank You!

